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Nonlinear free vibrations of coupled spans of overhead
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Abstract. The weakly nonlinear, freely vibrating motion of a system of coupled spans of suspended overhead trans-
mission lines is studied. It is shown that the natural vibration is the gravity mode, of which the tension component
vanishes in the first harmonic. The problem originates from a study of the phenomenon of galloping, which is a high-
amplitude periodic oscillation of overhead transmission lines due to steady crosswind. Particular attention is given to
an intermodal resonance, which may be interesting for galloping control.
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1. Introduction

Overhead transmission lines for transport of high-voltage electricity are cables made of aluminium
alloy, suspended between high towers in the countryside. One cable of several kilometers between
two anchoring towers and carried by several towers in a row is called a section. The part of a
section that is suspended between two towers is called a span. As the cable is connected to the
towers by a freely movable suspension string or isolator, the dynamical motion of neighbouring
spans are coupled. In wintertime when the cable is covered by snow or ice, the cables are vulner-
able to large-scale vertical vibrations in combination with a torsional vibration sustained by steady
crosswinds. This aero-elastic instability is known as galloping [1–5]. For high enough amplitudes
neighbouring conductors may get close enough for the air-insulation to break down, causing a
short-circuit and structural damage to the cables (Figure 1).

It is known from observations that even a small wind force is sufficient to maintain a gallop-
ing vibration. The motion of the cable is therefore very close to a free vibration, which is what
we will consider here, although a more complete modelling would include the driving force of the
wind and the effect of friction with the air [6].

Both the torsional motion and the horizontal cable deflection are known to be important for the
full problem, but we will concentrate on the asymptotic analysis of the coupling of spans. There-
fore, torsion will be assumed to be decoupled from the vertical vibration and the horizontal motion
to be negligible.

The paper is organised in four parts. First, we derive a systematic model by asymptotic reduc-
tion of a full model. This full model, based on first principles of Newton’s and Hooke’s laws,
assumes a linear elastic cable without bending stiffness moving in a vertical plane in a friction-
less medium. The asymptotic reduction utilizes two small parameters, viz. geometrical slenderness
(small sag/span ratio) and a high-elastic stiffness (small span/longitudinal-wave-length ratio). For
a proper asymptotic analysis these two parameters have to be coupled. The resulting equations are



338 S.W. Rienstra

Figure 1. Overhead transmission lines. Spans are suspended between towers from suspension strings.

similar, but not exactly the same, to what has been presented elsewhere like in [7, 8]; in particu-
lar, their asymptotic treatment of the x-component is inaccurate or at least unclear, which becomes
important for higher orders. Our systematic derivation was presented earlier in [3], but for clarity
we will repeat the arguments here.

The second part consists of a Lindstedt-Poincaré approximation of weakly nonlinear transversal
wave motion, where the small parameter is now the dimensionless amplitude. It is shown that the
natural motion in a coupled series of spans is not of elasto-gravity type (the usually adopted gal-
loping motion in a single-span) but of gravity type. As most galloping occurs with series of spans,
the relevance of single-span motion is therefore questionable. A result, reported already in [3], is
the presence of intermodal resonance for certain choices of parameters.

This resonance will be studied in the third part. It is shown that near this resonance no motion
is possible consisting of a dominating gravity mode. The second harmonic of elasto-gravity type
is just as big or bigger. It is conjectured that designing the suspended cable with parameter values
right at this resonance will delay or hinder the occurrence of galloping.

In the fourth part some example cases are evaluated and illustrated by figures.

2. Model

2.1. Differential equations and boundary conditions

Consider a cable, fixed at the outer ends, and divided into N equal spans by N−1 equal supports
(see Figure 2). N is not large (in the asymptotic sense to be explained below). The supports are
inextensible suspension strings (isolators) of length a and negligible weight, suspended from fixed
pivots separated by a distance S, the span size.

The cable is linearly elastic, with negligible bending stiffness, of uniform undeformed effective
cross-section A, mass per unit length m, and Young’s modulus E. It has a length per span L when
the cable is free of tension. When stationary, each span has a sag D which depends on S and L. In
practice, the prescribed sag D is obtained by applying a suitable cable tension, from which length
L follows. So L is an unknown of the stationary problem. This, however, has no bearing at all on
the unsteady problem.

We parametrize the position along the length of the cable by the variable �∈ [0,NL], such that
this is just the arc length when the cable is unstretched. The (dimensional) time variable is t . We
will here only consider cable motion in a vertical plane, which is provided with a Cartesian coor-
dinate system oriented such that the gravity vector −gey points into the negative y-direction (in
reality a point on the cable moves along a slightly tilted vertical ellipse).
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Figure 2. Sketch of a suspended cable, consisting of 3 interconnected spans.

The cable position is given by the position vector X(�, t)= (X(�, t), Y (�, t)) with a correspond-
ing tension vector T (�, t)=T (�, t)(cosψ, sinψ), where ψ is the positively oriented angle between
the cable tangent and the horizontal. The tension vector is tangent to the cable because the bending
stiffness is assumed negligible.

Now consider a small cable element d�. Due to gravity, cable tension, and inertial forces, this
element is stretched (but its mass remains the same). According to Hooke’s law [9], a cable ele-
ment is elongated in proportion to the tension (Figure 3), so

(
dX2 +dY 2)1/2 =

(
1+ T

EA
)

d�. (1)

According to Newton’s law, the internal (tension) and external (gravity) forces are in equilibrium
with the inertial forces, so

dT = (g ey + Ẍ)md�, (2)

where {̈ } denotes a second derivative with respect to time. When we introduce

∂X

∂�
=
(

1+ T

EA
)

cosψ,
∂Y

∂�
=
(

1+ T

EA
)

sinψ, (3)

the equations that finally result in the limit d�→0 are given by [7]

∂

∂�

( T

1+T/EA
∂X

∂�

)
=m∂

2X

∂t2
, (4a)

∂

∂�

( T

1+T/EA
∂Y

∂�

)
=m∂

2Y

∂t2
+mg, (4b)

(∂X
∂�

)2 +
(∂Y
∂�

)2 =
(

1+ T

EA
)2
. (4c)

The boundary and coupling conditions are (see Figure 4):
(i) fixed supports at �=0 and �=NL:

X=0, Y =0 (�=0), (5a)

X=NS, Y =0 (�=NL), (5b)

(ii) at the suspension strings �=nL, where n=1, . . . ,N−1, position vector X is continuous, the
rigid but hinged suspension strings restrict the motion to a circle, while the force component
normal to the string is continuous:
[
X
]�=nL+
�=nL−

=0, (6a)

(X−nS)2 + (Y −a)2 =a2, (6b)
[
T cos(φ−ψ)

]�=nL+
�=nL−

=0. (6c)
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Figure 3. Sketch of cable element stretched
under tension.

Figure 4. Sketch of cables connected at suspension string.

Here φ denotes the positively oriented angle of the suspension string with the vertical and
�=nL± denote the limits from either side of the support.

2.2. Small parameters and the mode of vibration

The type of motion of interest allows further reduction of the model which is specified by,
– The ratio of sag D (the maximum stationary vertical displacement) and cable length L is small

(typically in the order of 1/30), so the slenderness,

ε=D/L→0, (7)

is a small parameter in the problem. This parameter will be used later to further reduce the
model.

– The total vertical nonstationary displacement is of the order of the sag, so that

Y/L=O(ε). (8)

– The transversal wave length λT is of the order of L, whence

λT /L=O(1). (9)

This is exactly what may be expected from the boundary conditions at the span ends: 1
2 , 1, 2,

etc. waves per span.
– Apart from the slenderness, there is still another small parameter in the problem, which is less

visible, as it is related to the relative elasticity.
In general, it takes some time for a change of tension to be distributed, as a longitudinal ten-
sional wave, through the cable. This time, however, is very short, since the propagation speed
of these waves (the sound speed) is high and N is not large. In other words, the longitudi-
nal wave length λL is large compared to L. A second small parameter, however, is usually not
very convenient in an asymptotic analysis, so we use the estimate,

L/λL=O(ε), (10)

which is borne out by practice.
– The string length a is of the order of the sag, so

a/L=O(ε). (11)

– The relative amplitude δ of the time-dependent perturbation will be taken small but bigger
than the orders of ε neglected. We will assume a nearly harmonic vibration, with a single
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dominating frequency ω, which is to be found. Since we are interested in the intrinsic nonlin-
ear interaction between the harmonics, we will analyse the generated higher harmonics by a
Lindstedt-Poincaré series in δ [10–12]. To keep the results transparent, higher harmonics not
generated by the first one will be excluded.

3. Asymptotic analysis

3.1. Reduced problem

The basic small parameter ε will be used to reduce the general problem defined above to an
asymptotic model. This model, which is assumed to be independent of ε, will subsequently be
analysed asymptotically for small relative amplitude δ.

Since the longitudinal wave speed is cL= (EA/m)1/2, while L/λL =ωL/cL = O(ε), we can
introduce the reference frequency ωref = ε(EA/m)1/2/L. The dimensionless frequency ω∗ and
time variable t∗ then follow from

ω=ωref ω
∗, t= t∗/ωref . (12)

Since λT /L=O(1), the spatial coordinate � obviously scales on L (note that L is an unknown of
the problem). Since Y/L=O(ε), Y scales on εL. The transversal wave velocity is cT = (T /m)1/2,
so λT /L= cT /ωL=O(1), yielding that the tension scales on Tref = ε2EA. Together we have for
� ∈ {the n-th span}

�= (n−1+ s)L, Y (�, t)= εLY ∗(s, t∗;n), T (�, t)=Tref T
∗(s, t∗;n), (13)

where we introduced a local nondimensional parameter s∈ [0,1] to parametrize the position within
a span. The suitable scaling for x is more subtle. Of course, the slender geometry suggests imme-
diately that X≈ �. However, we are only interested in x-displacements that are very small. By
substituting the above estimates in Equation (4c), it transpires that ∂

∂�
X= 1 + O(ε2), and so we

write for X from the n-th span

X(�, t)= (n−1)S+Ls+ ε2LX∗(s, t∗;n). (14)

Finally, we investigate the rôle of gravity. If we substitute the present estimates in Equation (4b),
we find the term mgL/EAε3 next to terms of O(1). So it has to be O(1) or smaller. Suppose it is
smaller; then the stationary solution would be Y ≡0 to leading order, so D=0, which contradicts
our scaling assumptions. It follows that the term is O(1) and we introduce

µ= mgL

8EAε3
=O(1) (15)

(where a factor 8 has been included for notational convenience; c.f. [7]). While omitting the super-
script asterisks from here on, we obtain, under the approximation of small ε, the reduced version
of problem (4) as follows

∂T

∂s
=0,

∂

∂s

(
T
∂Y

∂s

)
=8µ+ ∂2Y

∂t2
,

∂X

∂s
+ 1

2

(∂Y
∂s

)2=T . (16)

In practice, the sag D and span size S are known, while cable length L is to be determined.
This means that ε and µ are to be determined from the stationary solution. Moreover, all prob-
lem parameters are assumed to be the same for all spans and so the stationary solution is periodic
in space. It is useful, therefore, to split up the solution into a stationary and nonstationary part
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X(s, t;n)=X0(s)+x(s, t;n), Y (s, t;n)=Y0(s)+y(s, t;n), T (s, t;n)=T0(s)+ τ(s, t;n)
(17)

with the boundary conditions for the stationary part being Y0(0)= Y0(1)= 0 and X0(0)= 0. As
we scaled Y on εL=D and, from symmetry, anticipate the location of maximum deflection half-
way, we have of course Y0(

1
2 )=−1. The condition for X0 at s = 1 is not really a boundary

condition to the scaled problem, but implicitly determines the unknown length L by the relation
S=L(1+ ε2S0) and (up to the ε-approximation pursued so far) X0(1)= S0. The result is easily
found to be a parabola, and given by

T0(s)=µ, Y0(s)=−4(s− s2), X0(s)=µs− 4
3 − 32

3 (s− 1
2 )

3, S0 =µ− 8
3 . (18)

If we substitute (17) and (18) in (16), we obtain our fundamental nonstationary problem

∂τ

∂s
=0, (µ+ τ)∂

2y

∂s2
+8τ = ∂2y

∂t2
,

∂x

∂s
+8(s− 1

2 )
∂y

∂s
+ 1

2

(∂y
∂s

)2 = τ. (19)

The boundary conditions at the rigid supports follow readily:

x(0, t;1)=x(1, t;N)=y(0, t;1)=y(1, t;N)=0. (20)

For the conditions at the suspension string (s= 0, n= 2,3, . . . ,N and s= 1, n= 1,2, . . . ,N − 1)
we observe that aφ/L= O(ε2), as it is of the order of the x-variation; therefore φ= O(ε), and
for small ε we obtain the conditions

y(0, t;n)=y(1, t;n)=0, x(1, t;n)=x(0, t;n+1), τ (1, t;n)= τ(0, t;n+1) (21)

with the important consequences that

N∑

n=1

[
x(1, t;n)−x(0, t;n)]=0, τ = constant in s and independent of n. (22)

3.2. Weakly harmonic motion

The Lindstedt-Poincaré method [10–12] involves the assumption of a periodic solution with fun-
damental, as yet unknown, frequency ω. The amplitude δ will be introduced as a small parameter
and, based on this, a solution will be constructed as a power series in δ, where ω is also dependent
on δ.

In order to apply the condition of periodicity it is necessary to introduce the inherent time scale

t ′ =ωt. (23)

Now assume y=O(δ) and expand

y= δy1 + δ2y2 +· · · (24)

and similarly for x and τ . We consider y1, y2, . . . normalized, for example as y1(
1
2 )=y2(

1
2 )=· · ·=

1. We also expand ω as follows:

ω=ω0 + δ2ω2 +· · · , (25)

where we already used the result that ω1 = 0. This might have been guessed from the intuitive
argument that ω should not depend on the sign of the vibrational amplitude.
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Introduce the notation { }′ = ∂
∂s

{ }, and {·} = ∂
∂t ′ { } . Substitute the δ-series in (19), and collect

like powers of δ:

µy′′
1 +8τ1 =ω2

0ÿ1, x′
1 +8(s− 1

2 )y
′
1 = τ1, (26)

µy′′
2 +8τ2 + τ1y

′′
1 =ω2

0ÿ2, x′
2 +8(s− 1

2 )y
′
2 + 1

2 (y
′
1)

2 = τ2 (27)

with τ1, τ2, . . . constant in s. The interesting solutions here are based on the harmonic solution of
the linearized problem (i.e., for y1, x1, τ1). Since any phase shift in time is unimportant, we may
assume y1, x1, τ1 to vary in time like sin t ′. The next question is now what time dependence this
induces in the second order. In Equations (27) the terms τ1y

′′
1 and (y′

1)
2 act as an inhomogeneous

(source) term. Therefore, since they vary in time like (sin t ′)2 = 1
2 − 1

2 cos 2t ′, we expect a constant
and a cos 2t ′ contribution. So we put

y1(s, t
′;n)=y11(s;n) sin t ′, y2(s, t

′;n)=y20(s;n)+y22(s;n) cos(2t ′), (28)

and similarly for x and τ .
By substituting (28) in (26) and (27) and collecting the harmonics, we have

µy′′
11 +8τ11 +ω2

0y11 =0, x′
11 +8(s− 1

2 )y
′
11 = τ11, (29)

µy′′
20 +8τ20 + 1

2τ11y
′′
11 =0, x′

20 +8(s− 1
2 )y

′
20 + 1

4 (y
′
11)

2 = τ20, (30)

µy′′
22 +8τ22 − 1

2τ11y
′′
11 +4ω2

0y22 =0, x′
22 +8(s− 1

2 )y
′
22 − 1

4 (y
′
11)

2 = τ22. (31)

The boundary conditions are the same as for x, y and τ , viz. (20), (21) and (22), but now taken
independently for each harmonic.

4. Solutions

In spite of the many assumptions and reductions made, the possible solutions are still numerous.
This, on the other hand, is exactly in agreement with reality, where the cables are known to possi-
bly vibrate in many modes. This indeterminacy is also a very important problem to be dealt with
in any numerical simulation.

For a single span, two important classes of motion can be distinguished: elasto-gravity waves
and gravity waves [3]. In the first, the tension perturbations are nonzero to leading order and elas-
ticity and gravity both act as restoring forces. In the second, elasticity is only important in the
higher orders, and to leading order the tension vanishes. The probably best-studied cable motion
is the symmetric mode with fixed ends (a single-span mode), which is an example of an elasto-
gravity mode [3, 5, 7, 8, 13–17]. Higher order, asymmetric modes of single spans may be of the
gravity-mode variety.

For multiple spans the situation is actually simpler, since elasto-gravity waves are very unlikely
to exist in practice. This is seen as follows. For τ11 �=0, the solution of (29), at the n-th span, is
given by

y11 = 16τ11

ω2
0 cos( 1

2k)
sin( 1

2ks) sin( 1
2k− 1

2ks), (32a)

x11 =Bn+ 64τ11

ω2
0 cos( 1

2k)

(
sin(ks− 1

2k)

k
− (s− 1

2 ) cos(ks− 1
2k)

)

, (32b)
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where k=ω0/µ
1/2 is the modal wave number and the constant τ11 determines the amplitude of

the mode. Condition (22) requires that k is equal to any solution of

64Nτ11

ω2
0

(
tan 1

2k

1
2k

−1

)

=0, (33)

while, with the continuity conditions (21), it follows that Bn=0.
We see that the only solution possible is a repetition of N single-span solutions of elasto-gravity

type that are all the same. This is unlikely in general, given the fact that the cable motion is pro-
duced by an uncontrolled cause of natural origin, viz. the wind. So we conclude that for overhead
transmission lines the natural motion for multi-span configurations is a gravity wave with τ11 ≡0,
which we will further consider here. It is a relatively little-studied type of motion, although it con-
tains the interesting phenomenon of intermodal resonance.

4.1. Multi-span gravity waves

As we indicated above, this class of solutions has a vanishing-tension’s first harmonic τ11. We have
then for the n-th span (1≤n≤N ) the general solution for the j -th mode

τ11 =0, y11 =An sin ks, where k=ω0/µ
1/2 and k=kj = (2j −1)π,

x11 =Bn−8An

(
cos ks
k

+ (s− 1
2 ) sin ks

)
,

B1 =8k−1A1,Bn=8k−1(2A1 +2A2 +· · ·+2An−1 +An),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(34)

τ20 =
3
8ω

2
0A

2

16+3µ
, y20 =4τ20µ

−1(s− s2),

x20 =Cn+ τ20s+ 8
3τ20µ

−1
(
1+8(s− 1

2 )
3
)− 1

8k
2A2

n

(
s+ sin 2ks

2k

)
,

C1 =0,Cn= 1
8k

2(n−1)A2 − 1
8k

2(A2
1 +· · ·+A2

n−1),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(35)

τ22 =
1
8k

2ω2
0A

2

16−ω2
0

, y22 =−2τ22ω
−2
0 (1− cos 2ks),

x22 =Dn+ τ22s−16τ22ω
−2
0

(
1
2 + (s− 1

2 ) cos 2ks− sin 2ks
2k

)
+ 1

8k
2A2

n

(
s+ sin 2ks

2k

)
,

D1 =0,Dn= 1
8k

2(A2
1 +· · ·+A2

n−1)− 1
8k

2(n−1)A2,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(36)

where we have used the notation

A2 = 1
N

N∑

n=1

A2
n. (37)

Note that δAn, rather than An, is the modal amplitude, so we may normalise the amplitudes, for
example by assuming

A2 =1. (38)

From (22) it follows that the amplitudes are further restricted by the condition that

A= 1
N

N∑

n=1

An=0. (39)



Nonlinear Free Vibrations 345

For example, a 2-span configuration (N = 2) with equal vibrational energy in each span will
have A1 = −A2 = 1 under normalisation (38). The frequency is, to leading order, equal to ω0 =
(2j −1)πµ1/2. The higher-order shift ω2 is to be determined by higher-order equations.

4.2. Intermodal resonance near ω=4

A striking property of the obtained solution is the singularity at ω0 = 4 in τ22, where the pres-
ent approximation breaks down. Apparently, a near-harmonic j -th mode solution which is tension
free in the first harmonic is not possible for any value of µ near (4/(2j − 1)π)2. Due to inter-
modal resonance, the second mode of the second harmonic is amplified to first order whenever
ω0 =4+O(δ).

In order to investigate the behaviour of the solution near this singularity, we write µ =
µ0 + δµ1, where µ0 = (4/π)2 and assume ω=ω0 + δω1 +· · · (due to the asymmetric dependence
on δ through µ, ω1 is not necessarily zero here), to get

µ0y
′′
1 +8τ1 =ω2

0ÿ1, x′
1 +8(s− 1

2 )y
′
1 = τ1, (40)

µ0y
′′
2 +8τ2 + (µ1 + τ1)y

′′
1 =ω2

0ÿ2 +2ω0ω1ÿ1, x′
2 +8(s− 1

2 )y
′
2 + 1

2 (y
′
1)

2 = τ2. (41)

In view of the above results we expect that a cos 2t ′-term is lifted from O(δ2)-level to O(δ)-level;
hence we assume

y1(s, t
′)=y11 sin t ′ +y12 cos 2t ′, (42)

and similarly for x1 and τ1. After substitution and collecting the harmonics we find

µ0y
′′
11 +8τ11 +ω2

0y11 =0, x′
11 +8(s− 1

2 )y
′
11 = τ11, (43)

µ0y
′′
12 +8τ12 +4ω2

0y12 =0, x′
12 +8(s− 1

2 )y
′
12 = τ12. (44)

Again, the boundary conditions (20), (21) and (22) are the same as for x, y and τ but now taken
independently for each harmonic. We are particularly interested in the problem with τ11 ≡ 0. As
we saw before, this yields the solution

y11 =An sinπs, τ11 =0, y12 =− 1
8τ12(1− cos 2πs), (45–47)

where k=π , ω0 =µ1/2
0 k=4, and A=0 and an irrelevant multiple of sin 2πs in y12 is ignored.

Tension τ12 will be determined from the higher-order equations below. The coupling term (y′
1)

2

generates sin t ′, sin 3t ′, cos 2t ′, cos 4t ′ and constant terms, so we write for the next order

y2(s, t
′)=y20 +y21 sin t ′ +y22 cos 2t ′ +y23 sin 3t ′ +y24 cos 4t ′, (48)

and similarly for x and τ . We obtain the systems of equations

µ0y
′′
20 +8τ20 =0, x′

20 +8(s− 1
2 )y

′
20 + 1

4 (y
′
11)

2 + 1
4 (y

′
12)

2 = τ20,

(49)

µ0y
′′
21 +8τ21 +µ1y

′′
11 +ω2

0y21 +2ω0ω1y11 =0, x′
21 +8(s− 1

2 )y
′
21 − 1

2y
′
11y

′
12 = τ21, (50)

µ0y
′′
22 +8τ22 +µ1y

′′
12 +4ω2

0y22 +8ω0ω1y12 =0, x′
22 +8(s− 1

2 )y
′
22 − 1

4 (y
′
11)

2 = τ22. (51)

µ0y
′′
23 +8τ23 +9ω2

0y23 =0, x′
23 +8(s− 1

2 )y
′
23 + 1

2y
′
11y

′
12 = τ23. (52)

µ0y
′′
24 +8τ24 +16ω2

0y24 =0, x′
24 +8(s− 1

2 )y
′
24 + 1

4 (y
′
12)

2 = τ24. (53)
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This has the following solutions (for the n-th span).

y20 = 1
4π

2τ20(s− s2), τ20 =
1

128π
2(τ 2

12 +16A2)

1+ 1
3π

2
, (54)

y21 =0, τ21 =0, ω1 = 1
8π

2µ1, (55)

y22 = 1
8

(
τ22 − 1

16π
2µ1τ12

)(
cos 2πs−1

)
, τ12 =−2A2µ−1

1 , (56)

y23 =0, τ23 =0, (57)

y24 = 1
32τ24

(
cos 4πs−1

)
τ24 = 1

96π
2τ 2

12, (58)

while τ22 is to be determined from the next-order equations. We ignored the undriven multiples
of sinπs, sin 2πs, sin 3πs and sin 4πs in, respectively, y21, y22, y23 and y24. See the Appendix
A for the corresponding expressions for displacement x.
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Figure 5. An oscillating cable span (coupled). From top to bottom: the vertical displacement dY in sL for various time
steps; the position at the middle (s= 1

2 ) of the displacement in time; the varying part of the tension dT in time. All vari-
ables are dimensional.



Nonlinear Free Vibrations 347

The important conclusion is that the solution is, again, singular at µ1 = 0 through the tension
τ12 ∼µ−1

1 . It follows that a solution, tension-free in the first harmonic (τ1 ≡0), does not exist for
µ=µ0 +O(δ), while a solution which is tension-free in the first mode of the first harmonic (τ11 ≡
0) does not exist for µ=µ0 +O(δ2).

A speculative, but tempting conjecture is that a cable design with ω= 4 is favourable against
galloping. The vibration energy of a galloping cable is probably highest at or near ω=4 (with y-
amplitudes kept the same), because it then includes a strong elastic component. As a result, it will
be more difficult to initiate or maintain the process of galloping.

5. Typical examples

Two practically relevant examples of an oscillating, coupled, span are given in Figure 5. In both

cases we have m= 1 kg/m, g= 9·8 m/s2, EA = 2·156 × 107 N, and S= 320 m, while An=A2 = 1
and the lowest mode (j =1) is selected.

We show the dimensional varying parts of the vertical displacement dY =εLy and the tension
dT =ε2EAτ . In the left column we have a stationary tension T =12,600 N and sag D=10 m with
δ=0·5. In this case L=320·7 m, µ=0·6011, ε=0·0312 and a frequency of ω=2·436 or 0·175 Hz.
We observe a mild contribution of the higher harmonics in dY . These are more present in the case
displayed in the right column where we have a T = 16,500 N and D= 7·61 m with δ= 0·3. Now
L=320·3 m, µ=1·354, ε=0·0238 and a frequency of 3·655 or 0·201 Hz.

Note that we have not included a near-resonance solution because tension component τ22 is
still to be determined.

6. Conclusions

The problem of oscillating overhead transmission lines is considered in a strictly asymptotic way.
The model, initially derived from first principles, is reduced by systematically exploiting two small
parameters, viz. geometrical slenderness and relative elasticity, which allow us to remove irrelevant
elements. In the final model all parts contribute significantly. Then an asymptotic solution of this
model is obtained. It is based on the assumption that the cable vibrates harmonically with weakly
nonlinear perturbations.

The problem of interest here is a multi-span configuration with gravity waves, which is shown
to be the natural wave form for coupled spans. For certain values of the problem parameter, say
µ=µ0, this solution appears to show intermodal resonance, where the solution breaks down. Some
more detailed analysis showed that a solution that is tension-free in the first harmonic does not
exist for µ=µ0 +O(δ), while a solution that is tension-free in the first mode of the first harmonic
does not exist for µ=µ0 +O(δ2).

The nonexistence of a simple, harmonic wave form at this choice of parameters may be advan-
tageous when galloping is to be avoided.

Appendix A, near-resonance solutions

For completeness, we give here the solutions of the x-displacements corresponding to the
near-resonance problem of Section 4.2.

x11 =Bn−8An
(cosπs

π
+ (s− 1

2 ) sinπs
)
, (A1)

x12 = τ12

( sin 2πs
2π

+ (s− 1
2 )
(
1− cos 2πs

))
, (A2)
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x20 =Cn+τ20sπ
2( 4

3 s
2−2s+1)+τ20s− 1

8π
2A2

n

( sin 2πs
2π

+ s
)

+ 1
128π

2τ 2
12

( sin 4πs
4π

− s
)
, (A3)

x21 =Dn+ 1
16πAnτ12

(
cosπs+ 1

3 cos 3πs
)
, (A4)

x22 =En+τ22s+
(
τ22− 1

16π
2µ1τ12

)( sin 2πs
2π

− (s− 1
2 ) cos 2πs

)
+ 1

8π
2A2

n

( sin 2πs
2π

+s
)
, (A5)

x23 =Fn− 1
16πAnτ12

(
cosπs+ 1

3 cos 3πs
)
, (A6)

x24 =Gn+ τ24s+ 1
4τ24

( sin 4πs
4π

− (s− 1
2 ) cos 4πs

)
+ 1

128π
2τ 2

12

( sin 4πs
4π

− s
)
. (A7)

The integration constants Bn, . . . ,Gn (not the same as in (34–36)) follow readily from the bound-
ary and continuity conditions at s=0 and s=1.
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